
s and
ce and
 have
le by

 control
oning
sages

s the
s are

buted
, and
tens of
ch as
related
riment.
ments,
mputa-

eed
As the
ns of the
b-based

ffice
puta-

ision
rnia.
ratory,
JAVA Agents for Distributed System Management

Christopher Brooks

University of Michigan

Brian Tierney and William Johnston

Lawrence Berkeley National Laboratory1

University of California, Berkeley, CA, 94720

Abstract

Wide-area distributed systems provide significant benefits in terms of parallelism, robustnes
accessibility. However, they also present a new challenges in terms of configuration, maintenan
monitoring. A semi-autonomous management mechanism is needed to deal with systems that
lost contact with central administrators or have to deal with problems on time scales not possib
human administrators. In this paper we describe the use of Java-based agents and brokers to
and monitor a complex, highly distributed parallel application These agents use high-level reas
to solve problems and perform automated tasks. They also use IP-multicast to send KQML mes
to other associated agents - an “agency”. We describe an architecture and design, and discus
advantages and disadvantages of using Java for this purpose. We also show how these agent
extremely useful for performance monitoring of distributed systems.

Introduction
Current research at Lawrence Berkeley National Laboratory is exploring the use of highly distri
computing and storage architectures to provide all aspects of collecting, storing, analyzing
accessing large data-objects. These data-objects can be anywhere from tens of MBytes to
GBytes in size. They are typically the result of a single operational cycle of an instrument, su
single large images from electron microscopes, video images from cardio-angiography, sets of
images from MRI procedures, and images and numerical data from a particle accelerator expe
The sources of such data objects, e.g., centralized health care facilities or large scientific instru
are often remote both from the users of the data and from available large-scale storage and co
tion systems.

Our Wide-Area network-based Large Data-Object (WALDO) architecture [3] utilizes a high-sp
wide-area network between the object sources and a multi-level distributed storage system.
data is being stored, a cataloguing system automatically creates and stores condensed versio
data, textual metadata and pointers to the original data. The catalogue system provides a We
graphical interface to the data.

1. The work described in this paper is supported by ARPA, Computer Systems Technology O
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of Com
tional and Technology Research, Mathematical, Information, and Computational Sciences Div
(http://www.er.doe.gov/production/octr/mics), under contract DE-AC03-76SF00098 with the University of Califo
Authors: chbrooks@eecs.umich.edu, wejohnston@lbl.gov, bltierney@lbl.gov, Lawrence Berkeley National Labo
mail stop: B50B-2239, Berkeley, CA, 94720, http://www-itg.lbl.gov). This is report no. LBNL-NNNNN.
 DRAFT 1March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

owl-
ever,

rs on a
when
system
of the
: new
vents
fferent
moni-
nd exe-

tured

clients.
a-

out the
n a sys-
nually

used
sets of

ative
eration
o the

of
pagate
nicate

jects
he Dis-
d disk
a sets.
that as

oss both
l serv-
erform

hysical
ad from
Motivation

Applications operating in a distributed environment within a wide-area network often need kn
edge about the state of the network and the hosts within it in order to operate efficiently. How
much of this knowledge, such as the latency between two remote hosts or the number of use
particular server, is not easily determined from a single node within the network. Furthermore,
things go wrong with the network or the servers, one frequently cannot access the state of the
after the fact -- some sort of continuous state monitoring is needed to maintain a global history
system. Additionally, it is desirable for this monitoring system to be generalized and adaptable
types of users or applications may have different monitoring requirements. Analysis of the e
leading to congestion or system failure may also require accessing different types of data at di
granularities than those examined during normal operation, thus requiring adaptability of the
tors. The system must also have a great deal of autonomy. It must be able to make decisions a
cute tasks without prompting a human user.

One solution to these problems is to use a collection of software agents [2] to provide struc
access to current and historical information. In this paper we define anagent to be a process that
monitors the state of the system. These agents only communicate with other agents, not with
We define abroker agent (or broker) to be an agent that manages this information, filters inform
tion for clients, or performs some action on behalf of a client.

These agents are autonomous, adaptable entities that are capable of filtering information ab
state and history of a system, such as the throughput between servers, the number of users i
tem, or the location of different copies of a given dataset. They are also able to maintain a conti
updated view of the global state of the system, which allows users to optimize the configuration
depending on their particular requirements. In addition, they are able to independently perform
administrative tasks, such as the restarting of server processes.

This agent system, known as WHERE, is written entirely in Java, with the exception of a small n
library written in C. Java provides several features that make assist in the development and op
of a distributed agent environment. Java’s clean, object-oriented style lends itself nicely t
high-level AI programming style used in WHERE. Additionally, the support for dynamic loading
classes provided by Java’s reflection package is essential to WHERE’s ability to learn and pro
new behaviors. Also, Java’s support for TCP and multicast allows WHERE agents to commu
efficiently with each other and third-party applications across a wide-area network.

The Distributed Parallel Storage System
An important aspect of the WALDO architecture is the ability to access very large data-ob
quickly. To this end, we have designed and implemented a disk-based caching system called t
tributed-Parallel Storage System (DPSS) [5]. The DPSS is a collection of wide area distribute
servers that operate in parallel to provide high-speed logical block level access to large dat
These data sets are broken up into 64 KB blocks that are declustered (dispersed in such a way
many system elements as possible can operate simultaneously to satisfy a given request) acr
disks and servers. This strategy allows both a large collection of disks to seek in parallel, and al
ers to operate in parallel to send the requested data to the application, enabling the DPSS to p
as a high-speed data block server.

The DPSS consists of a name server, where the logical block names are translated to p
addresses (server: disk: disk offset), and several disk servers. In the disk servers, the data is re
disk into local cache, and then sent to the applications.
 DRAFT 2March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

(see:
hic and
g and

use of
ng the
rities

nts that
results
nizing

ble to
r with

s gone
’s fault

f data
decide
recom-
ile oth-
mber of
e to track

across
time.
rk con-

policy.
g com-
ers are
h as

r DPSS
curity
any-

gener-
anisms

ents do
rm all
out the
ces.

ut new
gorithm
The DPSS was developed as part of the DARPA funded MAGIC Testbed project
http://www.magic.net). We have maintained DPSS configurations spanning separate geograp
administrative domains. These experiences have demonstrated the difficulties in configurin
maintaining widely distributed systems by hand.

Agent Usage in a DPSS

A distributed system such as the DPSS, with several components, can greatly benefit from the
monitoring agents that provide structured access to current and historical information regardi
state of the DPSS. Agents can provide DPSS clients with different views and monitoring granula
of the system’s current and past state, depending on a client’s needs. For example, DPSS clie
need reliable high-speed connections for a long period of time, such as clients that capture the
of a particle accelerator experiment, would use an agent that was capable of collecting and orga
detailed network statistics. Also, if an agent detects some sort of failure or congestion, it is a
automatically change the granularity at which it collects data, providing the DPSS administrato
a more detailed picture of the system at the time the anomaly or failure occurred.

Agents can keep track of all components within the system and restart any component that ha
down, including any DPSS server or one of the other agents. This greatly improves the system
tolerance.

The agents also monitor the load of each DPSS block server. The DPSS allows for replication o
on multiple servers. If the load on one server is unacceptably high, the agents can be used to
which alternate server to use. Each client provides a set of constraints that the agents use to
mend a server configuration to a client. Some clients may be interested in network latency, wh
ers may be concerned about the total time required to store a set (which is dependent on the nu
servers used and the load on each server). As these parameters change, the agents are abl
them and determine whether other configurations would be better for a particular client.

Brokers can be used to keep track of multiple DPSS’s. Clients may wish to replicate their data
multiple DPSS’s and choose between them depending on the location of the client at a given
Brokers know which data sets are loaded on each DPSS and which DPSS has the best netwo
nectivity to a given client, and can advise the client which is the best DPSS to use.

A broker/agent architecture allows the system administrators to separate mechanism from
Agents and brokers can be used to determine policies and rules to be enforced while remainin
pletely separate from the actual mechanism used to implement these policies. Agents and brok
able to exchange information at a high level, hiding the details of how a particular policy, suc
security, is implemented. For example, agents can be used to provide secure authorization fo
clients. The client only needs to be aware of the security policy, which consists of obtaining a se
certificate from a known server and presenting it to the DPSS’s broker, without needing to know
thing about the mechanism by which public keys are generated or how a certificate is actually
ated. One an acceptable policy is in place, administrators are free to alter the underlying mech
without affecting clients.

When new components, such as a new disk server, are added to a DPSS configuration, the ag
not have to be reconfigured or restarted. When an agent is started on the new host it will info
other agents about the new server. Agents are able to continually propagate information ab
state of the system to each other, such as the addition and deletion of hosts, disks and interfa

New agent methods can be added at any time. Agents are capable of informing each other abo
tasks to be performed or about changes in existing tasks. For example, the brokers have an al
 DRAFT 3March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

etwork
fly”

trator
an one
te the
onfig-

t can be
ge sets,
et. The

ment

a
pli-

HERE
lities is
set of
for determining which DPSS configuration to use based on a set of parameters that include n
bandwidth, latency and current server load. If desired, this algorithm may be modified “on the
without having to reinstall a new set of binaries on every host in the system. A DPSS adminis
can also design a new task that automatically moved all datasets on a server the were more th
week old to tertiary storage. Once this was “taught” to one agent, that agent will then propaga
task to all the other agents in the agency, saving the administrator from needing to manually rec
ure each agent.

An agent can also be used to assist in the management of data sets. For example, an agen
instructed to replicate data sets across a second set of disks, automatically compress ima
migrate sets to mass storage after a given time or keep track of the content of an evolving datas
organization of agents to accomplish this sort of thing is shown in Figure 1.

WHERE Architecture

WHERE is a distributed system of agents written in Java. These agents model their environ
using an extensible set ofFacts. These Facts are then used to help the agents make decisions.
WHERE agents act on their environment using a set ofTasks. These Tasks may either accomplish
goal directly or be strung together in a sequence called a plan in order to accomplish more com
cated goals.

A WHERE agency consists of a set of agents who are overseen and coordinated by a broker. W
agents start out as generalized programs with a limited set of capabilities. One of these capabi
the ability to dynamically load and execute new code. They are then trained with a particular

Data Set
Broker DPSS

broker

WHERE
agent

Use of Agents and Brokers with a DPSS

Client
Application

Data Curator 2

DPSS
server

DPSS
server

DPSS Master

DPSS
server

WHERE
agent

WHERE
agent

WHERE
agent

WHERE
agent

Data Curator 1

Data Set
agent

Data Set
agent

DPSS
server

DPSS
server

DPSS Master

DPSS
server

WHERE
agent

WHERE
agent

WHERE
agent

WHERE
agent

Figure 1 DPSS use of agents and brokers
 DRAFT 4March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

c or

r cli-
ers are
They
lts for
iew of

ta sets,
truct a

achieve
f users
among

ferred
to

s.

t the
e: find-
mation
which
ents to

wn as
e current

also
nodes in
finding

fferent
e goal

planner
of the
Oper-
Opera-
until

hat pre-
erators in

to be
erform
s a goal
tasks to allow them to perform a specific function, such as monitoring a host’s network traffi
restarting a server that has crashed.

WHERE brokers are provided with additional tasks that allow them to filter and collate data fo
ents. Brokers serve as the agency’s interface with a client or another agency. Generally, brok
responsible for filtering, collecting, managing and maintaining information gathered by agents.
distribute client requests for information to the appropriate agents and filter and collect the resu
return to the client. Brokers are also responsible for assembling and maintaining a consistent v
the system from a number of independent sources of information.

Agent Model

WHERE agents reason generally about a closed-world environment composed of servers, da
routes, hosts and clients. They collect Facts about their world and use them to attempt to cons
consistent picture of the state of a DPSS and determine what actions are needed in order to
their goals. These Facts include the throughput between two nodes in a network, the number o
on a host, the datasets stored on a particular server, and the IP address of a particular client,
other things. This collection of types of knowledge that a WHERE agent can reason about is re
to as itsontology.The fact that WHERE agents have a limited, well-defined ontology allows them
use general reasoning techniques with a good chance of success.

Additionally, agents (and brokers) maintain two other types of knowledge: Tasks and Operator

A Task is an action that an agent is able to perform. The only requirement is that it implemen
method evaluate, which the agent calls to execute the task. Currently implemented tasks includ
PathTask, which finds the fastest route between two hosts, getServerInfoTask, discovers infor
about a DPSS, getHostInfoTask, which gets information about a host and checkServerTask,
probes a DPSS server to see if it is running and restarts it if it isn’t. Tasks are used to enable ag
perform simple, routine maintenance that needs to be done regularly and repeatedly.

WHERE agents satisfy more complicated goals by usingOperators to construct aPlan. This is
accomplished by using a partial-order planner[6] to implement a problem-solving strategy kno
goal-based reasoning. In goal-based reasoning, the agent constructs a state representing th
state of the world from the Facts that it knows. It is asked to accomplish some goal, which is
modeled as a state that is composed of Facts about its world. These states may be viewed as
a graph, while available Operators may be viewed as edges. The problem then becomes one of
a path from one node in a graph to another, where every node represents a possible state.

Since there are too many possible states to instantiate them all and find a path directly, a di
approach must be used. A partial-order planner is used to find a path from the start state to th
state, if one exists. Since the goal state contains one or more conditions that must be met, the
searches through the known Operators to find one that has a postcondition that matches one
conditions of the goal state. (If there is no such Operator, then the goal cannot be reached.) This
ator may have its own preconditions that must be satisfied, and so the planner searches for an
tor that will either satisfy one of these conditions or one of the goal conditions. This continues
all preconditions have been satisfied. The Operators chosen are placed into a partial ordering t
serves the preconditions needed for each operator. The agent then executes each of these Op
turn to reach the goal state, thereby accomplishing what it was asked to do.

This knowledge-based approach [4] provides two benefits: First, it allows WHERE agents
extended to perform new tasks and thus prevents ‘brittleness’. Rather than only being able to p
a few select tasks, the agent is able to attempt to solve any problem that can be expressed a
 DRAFT 5March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

t with
imilar
mmon
s.

bilities
pera-
sing its
ing the
per-

ds.

s an
allow

letely
le for
ternal

ative,
it, and

, add-
about,

ost it
emain-

d hopes
mes-
unica-
n can
e reply.

d to
this has

y are
Mes-
s typi-
state. The agents’ only limitation are the Operators that are available to it. Providing the agen
new Operators allows it to perform new tasks. It also allows Operators to be reused for solving s
tasks. Many of the diagnostic and monitoring tools used for the DPSS have a great deal of co
code. Expressing this code as a set of Operators allows it to be reused within different context

Second, this approach allows the central agent codebase to remain small. New agent capa
(“behaviors”) can be added by providing the agent with new operators and Tasks. These new o
tors increase the number of possible goal states the agent is able to achieve, thereby increa
functionality. New behaviors can be loaded dynamically and propagated between agents, allow
agency as a whole to increase its store of knowledge while it is running. This ability to learn to
form new types of tasks allows users to adapt and extend WHERE for their own particular nee

Communication

WHERE agents and brokers use a communication language called KQML [1]. KQML provide
extensible set of high-level agent messages known as performatives. These performatives
agents and brokers to communicate information and meta-information in a format that is comp
separate from the agent’s internal representation of this information. This makes it possib
WHERE agents and brokers to interact with other agents that may have an entirely different in
representation of their world.

KQML messages are structured using a Lisp-like syntax. Each message begins with a perform
followed by a property list indicating the sender and receiver of the message, how to interpret
the content of the message.

A performative is a request for an agent to perform a specific task, such as evaluating a function
ing a Fact to its knowledge base or answering a query. Common performatives include ask-
insert, evaluate and reply.

A sample KQML message used in WHERE is shown below:

(ask-about: sender Broker: receiver lbl-server3

:language KQML: ontology DPSS: reply-with reply-tag

:content (type host lbl-server3))

This is a request from a WHERE broker to an agent asking for any information it has about the h
is running on. The performative ask-about asks the receiver to return a Fact to the sender. The r
der of the message is a property list, that can be broken into tag-value pairs.

KQML is based on a connectionless, best-effort delivery system. An agent sends a message an
for a reply. The receiver is under no obligation to send a reply, or to even acknowledge that the
sage was received. This design spares agents from having to maintain lists of pending comm
tions or state tables tracking their communication with other agents. A reply to a communicatio
be considered to be an acknowledgment, and a lack of reply can be considered to be a negativ
(i.e. the agent is unable to satisfy the performative.)

It is worth noting that the KQML design is independent of the underlying network protocol use
deliver these messages. An implementation could use TCP to ensure delivery of all messages;
no bearing on an agent’s requirement to respond to a KQML message.

Inter-agent communication in WHERE is provided by IP multicast; all agents within an agenc
part of the same multicast group. This provides a logical bus for intra-agency communication.
sages are multicast on this bus, allowing one agent to refer to another only by its name (that i
 DRAFT 6March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

know
mes-

y sends
needs

to all

bility,
ticast,

taining
dition-
e data
tation,
Porta-
re of

ucture
reating
rmation
e. An
y. Since
he agent,

new
ard to
log in
ynamic
d allow-
nt to
e argu-
rm-

ho

tion, a
es this
exist-

s the
ather
allow-
cally associated with the canonical name of the host it runs on), rather than needing to explicitly
the DNS name of the host the other agent is running on. All agents will receive a copy of every
sage; messages received by an agent that are not intended for it are discarded.

Multicast also allows agents to easily disseminate new Tasks and Operators. The agent simpl
an add-task performative on the bus, indicating that all agents should receive it. The agent only
to send one copy of the message; the underlying multicast routers will copy it and forward it
other agents in the multicast group.

Use of Java within WHERE

Java provides five capabilities that are essential to WHERE’s functionality. They are: porta
object-oriented design, reflection and dynamic loading, support for both unicast (TCP) and mul
and the ability to interface with existing C libraries.

Portability is essential to WHERE’s success. DPSS’s are heterogeneous systems, and main
separate code trees for every possible architecture is a difficult and time-consuming task. Ad
ally, the portability of Java’s data types makes it simple for agents on one platform to exchang
with agents on another platform without being concerned about byte ordering, integer represen
or any of the other issues that typically plague developers of cross-platform communications.
bility also makes it possible for agents to exchange code with each other, a central featu
WHERE.

Java’s clean object-oriented design is also essential to the structure of WHERE. WHERE’s str
is based on a set of hierarchically-related agents that exchange various Facts about the world. T
these Facts as objects allows agents to use them to compactly represent related types of info
while treating them homogeneously for the purposes of storage, retrieval and exchang
object-oriented approach also makes it easy to add new Tasks and Facts to an agent’s ontolog
the Tasks and Facts are subclasses of an existing abstract class, the addition is transparent to t
which just treats them as an instance of the parent class.

Reflection and dynamic loading are key characteristics that allow WHERE agents to acquire
behaviors and take on new tasks. This is quite probably Java’s greatest strength with reg
WHERE. Since WHERE agents may be widely distributed across the Internet, is not feasible to
to the machine on which they are running, recompile the source code and restart the agent. D
loading allows the agent to load new Tasks as they are needed, keeping the code base small an
ing for incremental updating. Reflection allows WHERE agents to send code from one age
another; the receiving agent is able to query the new class to discover its name, methods and th
ments of those methods.This allows a WHERE designer to add a new class to an agency by info
ing a single agent of its location; this agent will then inform all the other agents it knows about, w
can then upload the code from a given URL.

Since the DPSS has a large body of existing C libraries for communication and data manipula
successful agent implementation should take advantage of this whenever possible. WHERE do
using Java’s native methods. This allows WHERE agents to communicate with the DPSS using
ing libraries, solving a potentially thorny problem: the DPSS was originally written to use XDR a
protocol for exchanging data. However, there is no stable version of an XDR converter in Java. R
than write one from scratch, we were able to create a native method wrapper for these routines,
 DRAFT 7March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

e this
ver,
nts that

make it
effi-

istent.
an-
g Sun’s
devel-
. As a
nts for

inter-
to. In

one by
caused

ds over
t of

ing the

ion to
e sta-

, FDDI,
est all
ce on
ries the

, etc.)
ssible
er in a

s that a
ke an
prob-
istrator.
ing WHERE to communicate seamlessly with the DPSS. The one issue here is portability: sinc
code is written in C, it will only run on architectures for which it has been compiled. Howe
dynamic loading softens this blow. Since Java methods are loaded at runtime, only those age
will actually need this method (a fairly small percentage) will suffer from this restriction.

Java is not perfect. There are several problems with the language and environments that can
difficult to use effectively. Two problems that we consider are lack of debugging support and
ciency.

Debugging support for multi-threaded Java programs in the Unix environment is nearly non-ex
The Java debugger,jdb is simply unable to help when working with multi-threaded programs. It c
not switch between thread contexts or set breakpoints accurately. We had some success usin
Java Workshop to debug Java programs (although it is rather slow and buggy) but at the time of
opment, we were using Java v1.1 for WHERE, and Java Workshop only supported Java v1.0.2
result, most debugging was done using print statements and auxiliary programs to probe age
their state. This was often a slow and painful process.

Java also has some well-known problems with efficiency. This is to be expected; since it is an
preted language, it cannot compete with native code applications, nor should it be expected
most cases, we were able to avoid these problems by reducing the amount of computation d
WHERE agents. However, there were cases where Java’s interface with the operating system
problems. One example is Java’s FileInputStream class. It has a method called skip() that rea
and skips n bytes in a File. While it seems that this would provide functionality similar to tha
Unix’s lseek(), in fact, it merely reads the characters and discards them, rather than increment
file pointer. This makes a huge difference to an agent trying to find the last line of a 10M file!

Results

WHERE is currently being used for three purposes: to provide current network status informat
client applications, to monitor and restart DPSS servers, and to collect and display near-real-tim
tistics about a DPSS.

In a research environment, DPSS servers are have multiple networks interfaces (i.e.: ethernet
and ATM), one or more of which may not be up at any given moment. The agents are used to t
possible network interfaces every few minutes, and keep track of the fastest available interfa
each server at any given moment. When a DPSS client requests a data set from a DPSS, it que
broker associated with that DPSS’s agency and find the fastest interface (Ethernet, ATM
between the client and server machines. Without the agents, the clients would need to try all po
interface to determine the fastest, a process that can take several seconds, or even long
wide-area ATM environment where call setup time may take up to one minute per connection.

WHERE agents are also able to continuously monitor DPSS servers. When an agent detect
server has failed, it is able to attempt to restart it. If it is unable to restart the server, it can ta
alternate action, such as sending email to the administrator of this DPSS informing them of the
lem. This autonomy makes the DPSS much more robust and eases the duties of a DPSS admin
 DRAFT 8March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

lients,
tatistics
plet that
y these
t how
eans of
HERE

d (i.e.:
load
d sys-
ntries.

y dis-
ven if

nowl-
ther than
va plays
ftware
terfac-
WHERE agents and brokers are also able to provide a near-real-time picture of the DPSS, its c
and the relative usage of various servers and network connections. The broker collects these s
from agents throughout the system, collates and massages them and forwards them to an ap
provides users with a graphical representation of the system, as shown in Figure 2. Previousl
statistics were available, but difficult to access in real time. A user could determine after the fac
the system had changed by using the logs and graphs generated from them, but had little m
watching the effects of an experiment on the system while the experiment was taking place. W
provides DPSS users with that capability.

In the near future we plan to add new tasks to keep track of where various data sets are locate
which DPSS or which tertiary storage location), and write a broker to automatically load or un
sets from the DPSS. We also will write tasks to manage log files generated by various distribute
tem components, and provide a mechanism to query the agents to look for certain types of log e

Conclusion

We have found that agents have proved to be quite useful in monitoring and maintaining highl
tributed systems. They allow users and administrators to maintain a global view of the system, e
the components are geographically and administratively separate. WHERE’s high-level k
edge-based design, which uses Facts, Tasks and Operators to determine a course of action, ra
hardcoding actions into the agents, allows the agents to grow and adapt to a user’s needs. Ja
an integral role in this architecture, allowing us to design a highly adaptable, portable set of so
agents with high-level behaviors and mature networking capabilities that are also capable of in
ing with existing code written in other languages.

Figure 2 Sample output from system status applet
 DRAFT 9March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

M,

ata
ital
s)

eed

all,
For More Information

More information is available on the WWW at:
http://www-itg.lbl.gov/DPSS/agents/WHERE.html
http://www-itg.lbl.gov/DPSS
http://www-itg.lbl.gov/WALDO

References
[1] Finin, T. et. al., DRAFT Specification of the KQML Agent Communication Language,

unpublished draft, 1993. (http://www.cs.umbc.edu/kqml/kqmlspec/spec.html)

[2] Genersereth, Michael and Ketchpel, Steven, Software Agents, Communication of the AC
July, 1994.

[3] Johnston, W., Jin, G., Hoo, G., Larsen, C., Lee, J., Tierney, B.,Thompson, M. “Real-Time
Digital Libraries based on Widely Distributed, High Performance Management of Large D
Objects.”, to be published in International Journal of Digital Libraries Special Issue on “Dig
Libraries in Medicine”,1997. (http://www-itg.lbl.gov/WALDO/LargeDataObj-Arch.pics.fm.p

[4] Russell, Stuart and Norvig, Peter,Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, New Jersey, 1995.

[5] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., “Using High Sp
Networks to Enable Distributed Parallel Image Server Systems”, Proceedings of
Supercomputing ‘94, Nov. 1994, LBL-35437. (http://www-itg.lbl.gov/ISS/papers.html.)

[6] Weld, Daniel S. “An Introduction to Least Commitment Planning”, AI Magazine, Summer/F
1994.
 DRAFT 10March 2, 1998 10:00 pm [Java.agents.LBNL.report.fm]

	JAVA Agents for Distributed System Management
	Christopher Brooks
	University of Michigan

	Brian Tierney and William Johnston
	Lawrence Berkeley National Laboratory
	University of California, Berkeley, CA, 94720
	Abstract
	Introduction
	Motivation

	The Distributed Parallel Storage System
	Agent Usage in a DPSS
	Figure 1 � DPSS use of agents and brokers

	WHERE Architecture
	Agent Model
	Communication

	Use of Java within WHERE
	Results
	Figure 2 � Sample output from system status applet

	Conclusion
	For More Information
	References
	[1] � Finin, T. et. al., DRAFT Specification of the KQML Agent Communication Language, unpublishe...
	[2] � Genersereth, Michael and Ketchpel, Steven, Software Agents, Communication of the ACM, July,...
	[3] � Johnston, W., Jin, G., Hoo, G., Larsen, C., Lee, J., Tierney, B.,Thompson, M. “Real-Time Di...
	[4] � Russell, Stuart and Norvig, Peter, Artificial Intelligence: A Modern Approach. Prentice Hal...
	[5] � Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., “Using High S...
	[6] � Weld, Daniel S. “An Introduction to Least Commitment Planning”, AI Magazine, Summer/Fall, 1...

	Data Set Broker
	DPSS broker
	WHERE agent

	Use of Agents and Brokers with a DPSS
	Client Application
	DPSS server
	Data Curator 2
	DPSS server
	DPSS Master
	DPSS server
	WHERE agent
	WHERE agent

	DPSS server
	DPSS server
	DPSS Master
	DPSS server
	WHERE agent
	WHERE agent
	WHERE agent
	WHERE agent

	Data Curator 1
	Data Set agent
	Data Set agent
	WHERE agent
	WHERE agent

